

Tunis, du 03 au 06 Novembre 2014

Tutorial:

ECO-CONCEPTION EN GÉNIE ELECTRIQUE

par Hamid BEN AHMED ENS Rennes, SATIE Lab.

Hamid BEN AHMED (benahmed@ens-rennes.fr)
Laboratoire SATIE (UMR CNRS 8029)

BRETAGNE

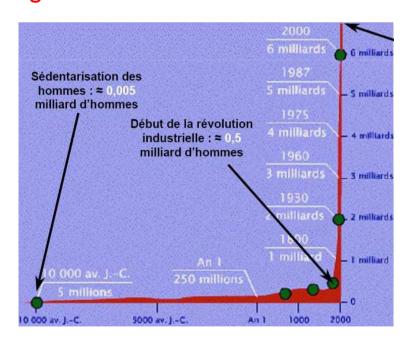
Plan

- Introduction générale (pourquoi ?)
- Analyse sur Cylce de Vie (ACV) (démarche, normes, exemples)
- Définitions de qlq grandeurs fondamentales (unités, relations, ...)
- Indicateurs d'impact sur l'environnement (ressources, matières première,
 GES, CO2, GWP, GER, ...)
- Eco-conception ou éco-optimisation (démarche)
- Etudes de cas

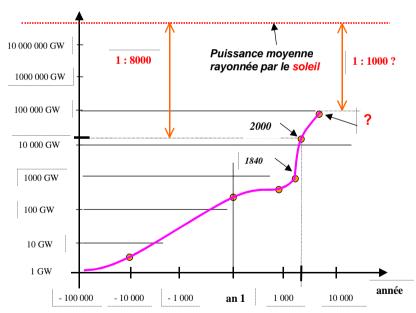
Eco quoi ??

"Le développement durable satisfait les besoins de la génération actuelle sans compromettre les facultés des générations futures à satisfaire les leurs" CNUED (Brundtland), 1987

Think globally, act locally:

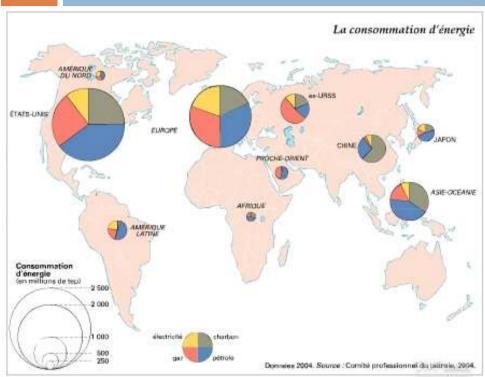


Pourquoi? (1/3)



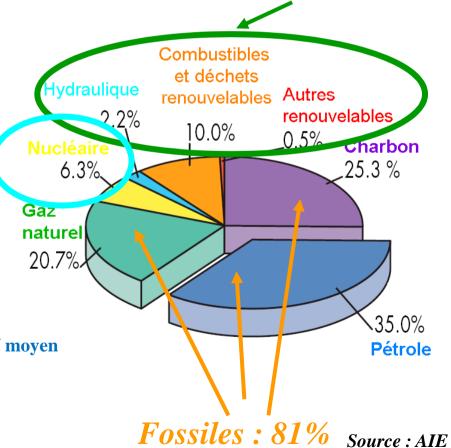
Le nombre d'êtres humains est passé de 2.5 milliards à 6.5 milliards en 50 ans

Pour la même période, la consommation des ressources (énergie primaire) a augmenté de 110%!


Croissance de la population humaine

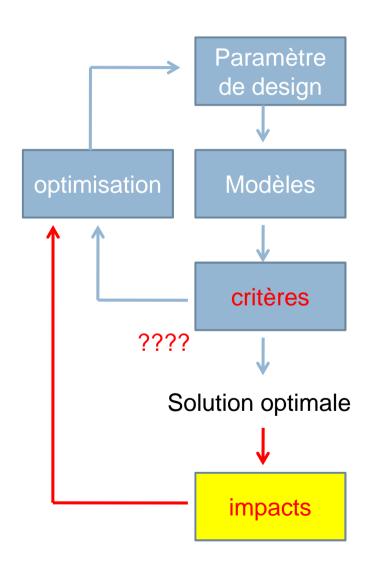
Croissance de l'énergie consommée par l'humanité (en puissance moyenne annuelle)

Pourquoi ? (2/3)

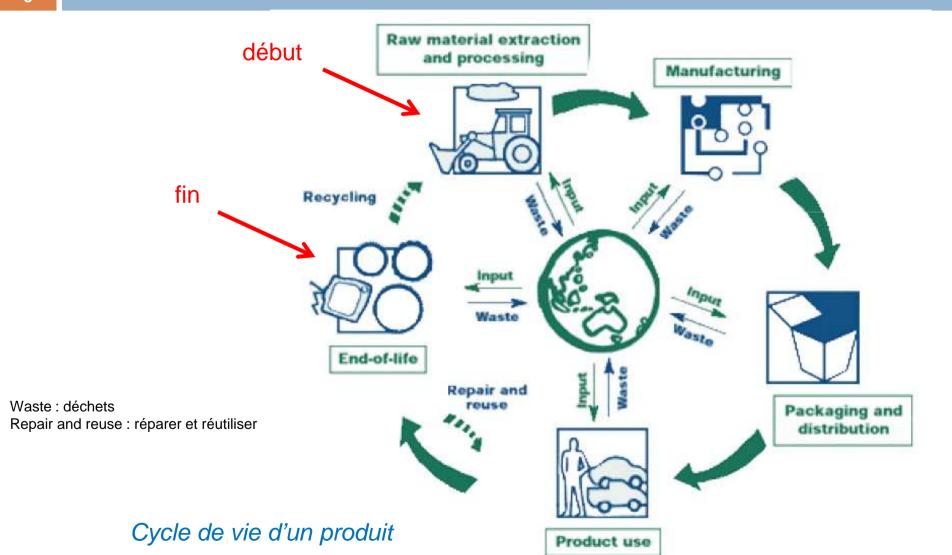

Et en plus une très forte disparité!

Energie primaire consommée par an : Monde $\cong 140.10^{12}$ kWh ou 12 Gtep ou 16 000 GW moyen

1 européen : 140 kWh/j 1 américain : 250 kWh/j 1 magrébin : 11 kWh/j


Sources énergétiques primaires consommées dans le monde

Pourquoi? (3/3)

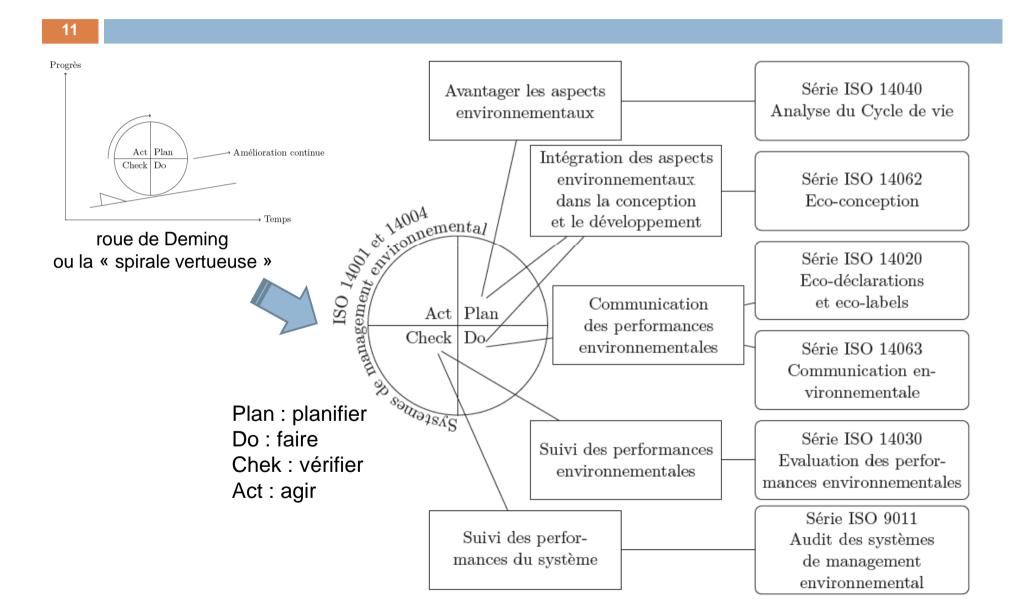

Si non ...

La démarche d'Analyse sur Cycle de Vie (ACV) (ou LCA : Life Cycle Assessment)

La notion d'ACV

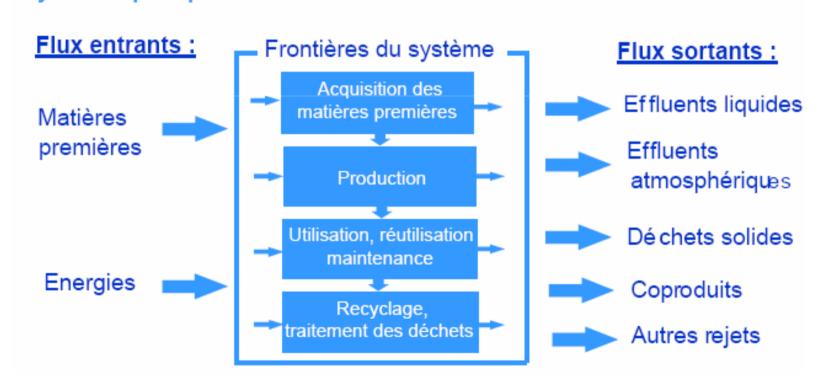
Qlq dates clés

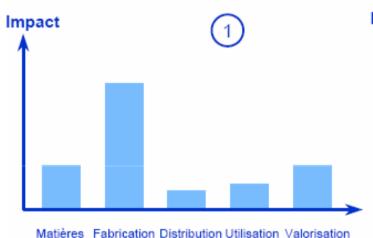
- en 1968, le Club de Rome [CRo] impose le concept d'une limitation des ressources impliquant une limite identique au développement économique et démographique
- 1970, l'Agence de Protection de l'Environnement Américaine, EPA met en place une méthode d'analyse d'impacts environnementaux
- en 1995, les ministres de l'environnement du G7 et de l'OCDE s'engagent à intégrer les préoccupations environnementales dans les activités des administrations
- en 1997, le principe de l'analyse sur cycle a été normalisé en 1997 (révisé en 2006)
 par l'organisation internationale de normalisation (ISO)


Le texte de la norme ISO 1400 1

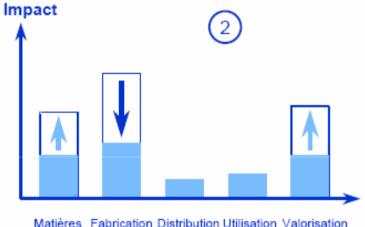
- « L'analyse du cycle de vie est une technique qui analyse les aspects environnementaux et les impacts potentiels associés à un produit, en :
- compilant un inventaire des entrants et sortants significatifs d'un système,
- évaluant les impacts environnementaux potentiels associés à ces entrants et sortants,
- interprétant les résultats de cet inventaire et des impacts des différentes phases étudiées en relation avec les objectifs de l'étude.

L'analyse sur cycle de vie étudie les aspects environnementaux et les impacts potentiels tout au long de la vie d'un produit (c'est-à-dire du berceau à la tombe) et ce de l'acquisition de matière première jusqu'au dépôt, en passant par la production et l'utilisation proprement dite du produit. Les catégories générales d'impacts environnementaux prennent en considération la consommation des ressources, la santé humaine et les conséquences écologiques. »


Cadre de la norme ISO 14000


L'inventaire du cycle de vie

Recenser des flux de matières et d'énergie aux frontières d'un système qui répond à l'unité fonctionnelle



Transfert de pollution

L'analyse de l'existant ①
montre que l'impact
environnemental majeur est
généré lors de la fabrication.

premières

L'une des solutions envisagées 2 permettrait de réduire cet impact en fabrication mais l'aggraverait à d'autres étapes. Cette solution entraînerait un transfert de pollution.

premières

C//S BRETAGNE

Logiciels ACV

14

Méthodes orientées problèmes :

Les méthodes orientées problèmes s'attachent à catégoriser les impacts de premier ordre, par exemple l'émission des CFC. Ces méthodes sont également connues sont le nom de méthode « mid-point ».

Méthodes orientées dommages

Contrairement aux méthodes orientées problèmes, les méthodes orientées dommages s'attachent à regrouper les impacts en fonction des résultats, aussi loin que possible dans la chaîne de cause à effet. C'est pour cela que ces méthodes sont également qualifiée de "end-point". Ces méthodes présentent l'avantage de montrer plus clairement l'impact. Ainsi au lieu de parler d'émissions de gaz de type SACO (comme les CFC), les catégories d'impact vont quantifier l'impact comme le dommage sur la santé humaine (cancers, cataractes, etc.). Cependant, suivre la chaîne de cause à effet est assez difficile, notamment dans le domaine biologique: les durées sont importantes et la chaîne de causalité pas toujours clairement établie.

Par conséquent, les méthodes orientées problèmes sont souvent préférées; il est toujours possible de dériver les dommages finaux à partir des effets de premier ordre ainsi obtenus.

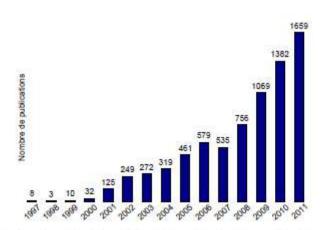


Figure 1.14 – Nombre de publications utilisant des méthodes de quantifications environnementales depuis 1997 [Carvalho2014]

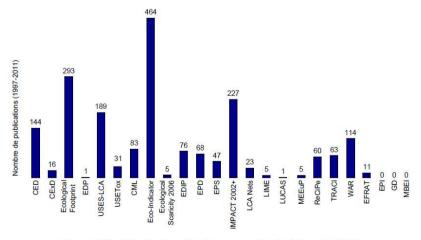


Figure 1.15 – Nombre de publications par méthodes [Carvalho2014]

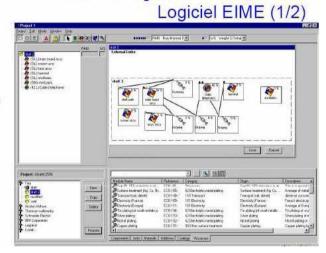
Qlq logiciels ACV

gratuit

Nom + Version	Logo	Transversale	Secteur	Expert ou Simplifié
Bilan Produit	ILAN PRODUIT	X		Simplifié
Cycle IT System V1.1	ycle 1	Iı	ndustrie mécanique et électronique	Simplifié
e-LICCO	e-LICCO		Bâtiment	Simplifié
EIME V5	C O D D E		Electrique et electronique	Expert
EQUER (Pleiades + COMFIE)			Bätiment	Expert
Food'Print v-1	DOOD PIZINT		Agro-Alimentaire	Simplifié
GaBi 5.0	GaBi Software	X		Expert
Open LCA 1.2 O	pentca	X		Expert
_				

Nom + Version	n Logo	Transversale	Secteur	Expert ou Simplifié
SIEC 1.0	Siecocy	X		Expert
SimaPro Analyst 7.3.3	SimaPro	X		Expert
<u>SivéaACV</u>	SivéaACV	X		Simplifié
Spin'IT V2.73	spin it		Textile	Simplifié
Umberto 5.6	umberto*	X		Expert
e>DEA	e>DEA	X		Simplifié
Eco-Bat 4.0	eco-bat		Bâtiment et construction	Expert
ECO it 1.3	ECA	X		Simplifié

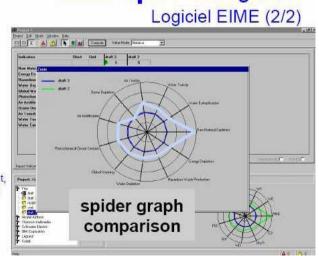
Expert


Exemple de EIME

Description du

produit:

Le concepteur décrit les différents composants de son produit électronique et la manière dont ils sont assemblés


Source: Ecobilan PcW (Schneider, IBM, Alcatel, Thomson Multimédia,

Calcul des impacts :

Selon un jeu d'impacts environnementaux présélectionnés (ici 11 axes), le concepteur obtient le profil environnemental du produit en cours de conception par rapport à une référence donnée (produit précédent, concurrent, objectifs de la société, ...)

Source: Ecobilan PoW (Schneider, IBM, Alcatel, Thomson Multimédia, Legrand, IDEME)

Les Gdeurs fondamentales

Les unités énergétiques

```
1 Joule (1 J)= 1 Watt.seconde (1 W.s)
=1 Newton x 1m
= 1 Volt x 1 Ampère x 1 seconde

1 kWh = 3600 000 J = 3,6 10<sup>6</sup>J (=3.6 MJ)

1 MJ = 0.28 kWh
tonne équivalent pétrole tep (pour les Carburants):
1 tep <=> 11 600 kWh (car 1kg fuel=11.6 kWh de PCI)
```

Notation en puissance de 10

k	kilo = 1000	$= 10^3$
M	méga = 1000 000	$=10^{6}$
G	giga	$=10^9$
T	téra	$=10^{12}$
P	péta	$=10^{15}$
E	exa	$=10^{18}$

```
1 Wh = 3600 J (1 TWh = 10^{12} Wh, 1 EJ = 10^{18} J)

1 tep \cong 11 600 kWh (tonne équivalent pétrole)

1 baril (159 l ou 140 kg) \cong 1700 kWh

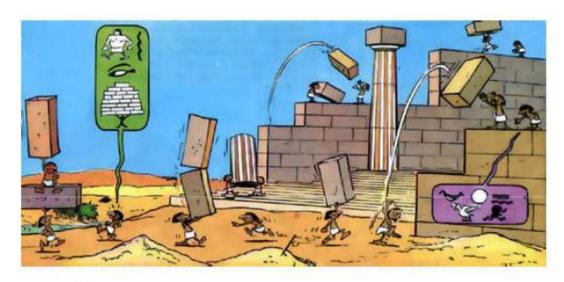
1 BTU (British Thermal Unit) \cong 252 cal \cong 1050 J

1 quad BTU : 10^{15}BTU = 290.10^{9} kWh
```

1 BTU = énergie pour accroître de 1°F une livre (pound, 453 grammes) d'eau

Le pouvoir calorifique

Nécessité d'uniformiser le contenu énergétique d'une ressource pour comparaison et opérations mathématiques


- pouvoir calorifique supérieur (PCS): C'est l'énergie thermique libérée par la réaction de combustion d'un kilogramme de combustible. Cette
 énergie comprend la chaleur sensible, mais aussi la chaleur latente de vaporisation de l'eau, généralement produite par la combustion. Cette
 énergie peut être entièrement récupérée si la vapeur d'eau émise est condensée, c'est-à-dire si toute l'eau vaporisée se retrouve finalement sous
 forme liquide.
- **pouvoir calorifique inférieur (PCI)**: C'est l'énergie thermique libérée par la réaction de combustion d'un kilogramme de combustible sous forme de chaleur sensible, à l'exclusion de l'énergie de vaporisation (chaleur latente) de l'eau présente en fin de réaction.

Valeurs énergétiques PCI/PCS de quelques combustibles

Uranium natur. (fission)	116 000 kWh/kg
Hydrogène	34/39 kWh/kg
Fuel	11,6/12,4 kWh/kg
Essence	12,4/13,4 kWh/kg
GPL : Propane	12,8/13,8 kWh/kg
Butane	12,7/13,7

Gaz Naturel	13,8/15,3 kWh/kg
Charbon	7 à 9 / 9 à 10 kWh/kg
Bois	2 à 4 kWh/kg
Bagasse	2,2 kWh/kg
Ordures	0,3 à 0,5 kWh/kg
ménagères	

La notion d'esclave énergétique

Un esclave énergétique: 200 W pendant 12h/jour = 100 W en permanence

Ou 3150 MJ/an ou 880 kWh/an

(ou 2.4 kWh/j/pers.)

Esclaves par habitant

USA	CH/LS	Chine	Bengladesh
120 esclaves	69	8	1
XXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX	XXXXXXXX XXXXXXXX XXXXXXX XXXXXXX XXXXXX	R R R R R R R	<i>₹</i>
		*:	Cf. cours O. Jolliet

Conso mondiale (primaire) actuelle est $\cong 140.10^{12}$ kWh/an (12 Gtep/an)

Ce qui correspond à : 160 milliards d'esclaves, 20 milliards de chinois, 2 milliards d'européens, 1.3 milliards d'USA, ...

Actuellement, en moyenne, chaque humain consomme l'équivalent de 21 esclaves

Les indicateurs d'impact sur l'environnement

1.Les prinipaux indicateurs

4

- L'épuisement de ressources naturelles estime le rapport entre les quantités de matières premières utilisées sur l'ensemble du cycle de vie (charbon, gaz, pétrole, fer, aluminium...) et les rapporte aux quantités disponibles et exploitables par l'homme ;
- La contribution à l'effet de serre comptabilise, en équivalent CO2, les émissions de gaz ayant un effet direct ou indirect sur l'effet de serre (NO2, CH4, CFC...);
- La consommation d'énergie (comme, quelle que soit la source de production, l'énergie consommée sur l'ensemble du cycle de vie)
- ■La consommation d'eau comme, quelle que soit la provenance, la quantité d'eau consommée sur l'ensemble du cycle de vie ;
- La contribution à la destruction de la couche d'ozone comptabilise, en équivalent CFC11, les émissions de gaz ayant un effet direct ou indirect sur la couche d'ozone (CFC, halons...);
- La création d'ozone photochimique comptabilise, en équivalent C2H4, les émissions vers l'air de substances ayant un effet direct ou indirect sur la création d'ozone (toluène, benzène, acétone...);
- La contribution aux pluies acides comptabilise, en équivalent d'ions H+, les émissions vers l'air de substances transformées en substances acides (SO2, NO2, NO, HCl...);
- La contribution à la toxicité de l'air comptabilise les volumes critiques émis vers l'air de substances appartenant aux listes de substances toxiques en usage dans la Communauté européenne ;
- La contribution à la toxicité de l'eau comptabilise les quantités émises vers l'eau de substances appartenant aux listes de substances toxiques en usage dans la Communauté européenne ;
- La production de déchets dangereux en fin de vie évalue la quantité de déchets produits et figurant sur les listes en usage dans la Communauté européenne.

2.Les ressources naturelles (non R

Ressources présumées définies par extrapolation des connaissances sur les ressources identifiées.

Réserves de base : incluent les réserves techniquement récupérables

sur la base des ressources connues

Réserves : relatives aux critères économiques et physico-chimiques

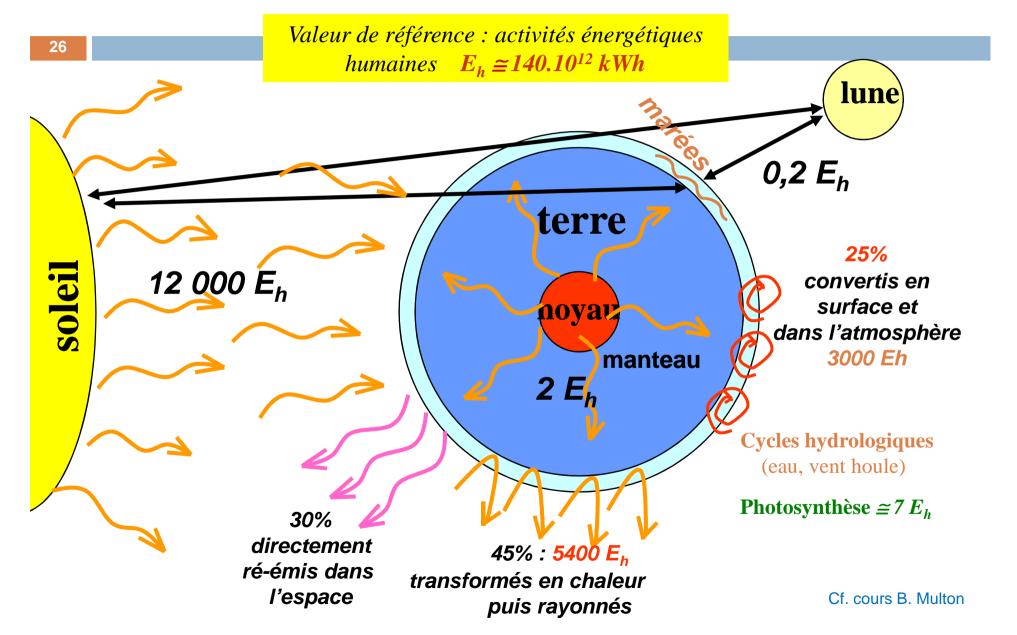
d'exploitation, tiennent compte des pertes à l'extraction

Exemples matières premières non énergétiques :
Données USGS 2006 en tonnes

À l'échelle mondiale : Le Cu est recyclé à 35% L'alu à 29 % L'acier entre 46 et 79%

	Ressources	Réserves	Réserves	Production M	ondiale (env. 2006)
	présumées	Base		primaire	secondaire
Acier	230 G	160 G	73 G	1,8 G	
Alu	13 à 18 G	8 G	5,7 G	34 M	
Cu	3 à 3,7 G	940 M	470 M	15 M	
Pb	1,5 G	140 M	67 M	4 M	4 M
Co	15 M	13 M	7 M	57,5 k	
Ni	130 M	140 M	64 M	1,4 M	
Pt	76 k		33 k	211 k (+4%/an)	50
Li (Metal)	14 M	11 M	4,1 M	18,8 k	

2.Les ressources naturelles (non R


en Gtep et R/P au <u>rythme actuel</u> de

consommation **Possibles** 2800 En milliards de Tep (1) Ressources raisonnablement assurées récupérables à moins de 80 \$/ka U (2) Ressources raisonnablement assurées + ressources **«Epuisables** supplémentaires récupérables à moins de 130 \$/kg U (3) A technologie constante, REP (réacteurs à eau pressurisée) (4) Dont récupérables (5) R/P: Ratio Réserves prouvées / Production 227 ans-R/P = 22740 ans En place Prouvées Récupération 61 ans 600 **43** ans R/P = 40 (5)améliorée 498 Restant Probables 100 à découvrir R/P = 61Prouvées 100 120 Prouvées R/P = 43 / 43 (2)23,4 (1) 143 135 (4) 80 **Hydrocarbures** Pétrole Charbon Gaz Uranium (3) liquides & lignites naturel non conventionnel

Source: Enspm Fl d'après BP Statistical Review, CEA, IFP/DSEP

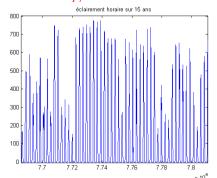
3.Les ressources renouvelables

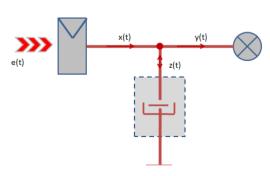
3.Les EnR ne sont pas sans impactive

Barrage des 3 Gorges (Chine, Yangtsé) 18,2 GW - 84 10⁹ kWh/an (26 X 700 MW turbines de 9,8 m et 425 t) (22,4 GW à terme puis 122 GW sur le reste du Yangtsé)

Mais aussi ...

- 27 Mm³ béton
- 1 à 2 millions de personnes déplacées
- plus de 10 villes englouties
- forte action sur l'écosystème


Ressources disponibles et bien réparties, techno maitrisées


Mais aussi ...

Coût énergétique PV

Occupation de champs cultivables

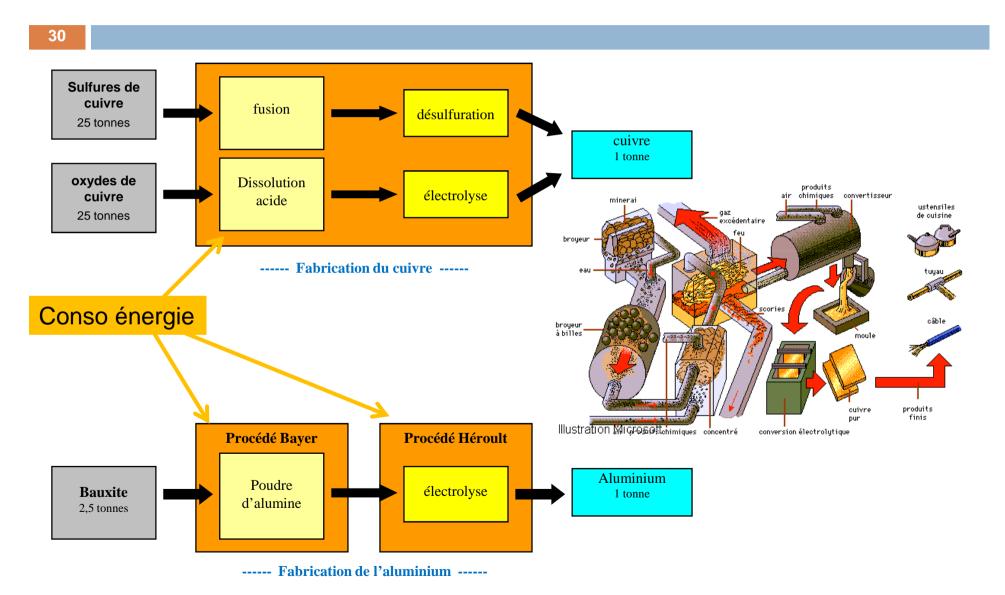
Énergies fortement intermittentes, d'où stockage

Les chiffres sont indicatifs (divers paramètres influant !!)

4.Coût énergétique de qlq éléments

Consommation de Unité Métaux ferreux Nom et description du produit ressources naturelles fonctionnelle énergétiques MJ Acier vierge 1 kg 30 Matériau Acier 100 % recyclé 1 kg 15 Acier moyen européen (47% recyclé) 1 kg 23 Laminage à chaud 1 kg < 1 Acier Forgeage 1 kg 3 Mise en œuvre Chromage 1 m2 37 GE Galvanisation 32 1 m2 1 profilé en acier moyen 1 ka 23 Composant 1 pièce en acier moyen, forgée 1 kg 26 Matériau Fonte vierge 23 Fonte 1 kg Acier ECCS Acier ECCS primaire 36 1 kg (Electrolytic Chrome | Matériau Acier ECCS 100% recyclé 13 1 kg Coated Steel) Acier inoxydable Matériau 35 Acier inoxydable 1 kg

4. Coût énergétique de qlq éléments



Métaux non ferreux		Nom et description du produit	Unité fonctionnelle	Consommation de ressources naturelles énergétiques MJ
		Aluminim primaire	1 kg	161
	Matériau	Aluminium 100% recyclé	1 kg	18
		Aluminium moyen européen (30% recyclé)	1 kg	118
		Extrusion	1 kg	11
Aluminium	Mise en œuvre	Laminage	1 kg	14
Adminian	Iviise en ceuvre	Forgeage	1 kg	5
		Anodisation	1 m2	31
		1 pièce en aluminium, extrudée	1 kg	130
	Composant	1 profilé en aluminium moyen	1 kg	132
		1 pièce forgée en aluminium	1 kg	123
Cuivre	Matériau	Cuivre primaire	1 kg	100
Matériau		Laiton primaire	1 kg	90
Laiton	Mise en œuvre	Laminage	1 kg	3
	Composant	1 profilé en laiton	1 kg	93
Bronze	Matériau	Bronze primaire	1 kg	100
Zinc	Matériau	Zinc primaire	1 kg	63
Nickel	Matériau	Nickel primaire	1 kg	211
Chrome Matériau		Chrome primaire	1 kg	241
Magnésium	Matériau	Magnesium primaire	1 kg	246
Plomb	Matériau	Plomb primaire	1 kg	18

4. Origine du coût énergétique

Fabrication vs ACV

3

	Production Machining Center (2000)	Automated Milling Machine (1998)	Automated Milling Machine (1998)	Manual Milling Machine (1985)
Energy Breakdown				
Constant start-up operations (idle)	85.2 %	13.2 %	27.0 %	31.6 %
Run-time operations (positioning, loading, etc)	3.5 %	20.2 %	29.4 %	0 % (manual)
Material removal operations (in cut)	11.3 %	65.8 %	48.1 %	69.4 %
Power Requirements				
Constant start-up operations (idle)	166 kW	1.2 kW	3.4 kW	0.7 kW
Run-time operations (positioning, loading, etc)	6.8 kW	1.8 kW	3.1 kW	0 kW
Material removal operations (in cut)	22 kW	5.8 kW	6.0 kW	2.1 kW

Machine Use Scenario

15% à 20% de l'énergie consommée concerne la mise en forme de la pièce par la CN. 75% à 80% représentent la préparation de l'usinage : positionnement de la pièce, changement d'outil, mise en rotation de la broche, état de veille.....

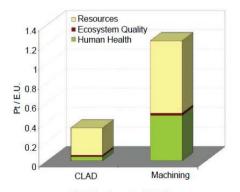
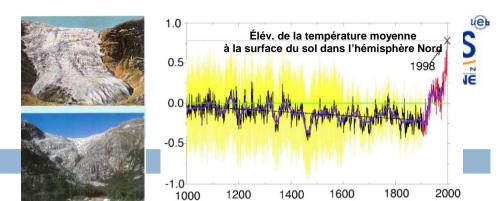

		-,						
Масиле поиго оренени сис	JOT HOURS	234 Hours	234 HOUIS	54.5 Hours				
Energy Use per 1000 work hours								
Constant start-up operations (idle)	149288 kWh	1038 kWh	3033 kWh	600 kWh				
Run-time operations (positioning, loading, etc.)	5471 kWh	1033 kWh	1818 kWh	0 kWh				
Total energy use per 1000 work hours	6237 kWh	673 kWh	702 kWh	100 kWh				
Material removal operations (in cut)	160996 kWh	2744 kWh	5553 kWh	700 kWh				
Energy Used par Material Removed								
Material Machined	Aluminium	Aluminium	Aluminium	Aluminium				
Material Removal Rate	20.0 cm ³ /sec	5 cm ³ /sec	5.0 cm ³ /sec	1.5 cm ³ /sec				
Material removed per 1000 work hours	40824000 cm ³	4212000 cm ³	4212000 cm ³	510300 cm ³				
Energy used/Material removed	14.2 kJ/cm ³	2.3 kJ/cm ³	4.7 kJ/cm ³	4.9 kJ/cm ³				
Material Machined	Steel	Steel	Steel	Steel				
Material Removal Rate	4.7 cm ³ /sec	1.2 cm ³ /sec	1.2 cm ³ /sec	0.35 cm ³ /sec				
Material removed per 1000 work hours	9593640 cm ³	1010880 cm ³	1010880 cm ³	119070 cm ³				
Energy used/Material removed	60 kJ/cm ³	10 kJ/cm ³	20 kJ/cm ³	21 kJ/cm ³				

Tableau 2.1 – Analyse énergétique de quatre machines de fraisage [Dahmus2004]


(a) Pièce d'étude

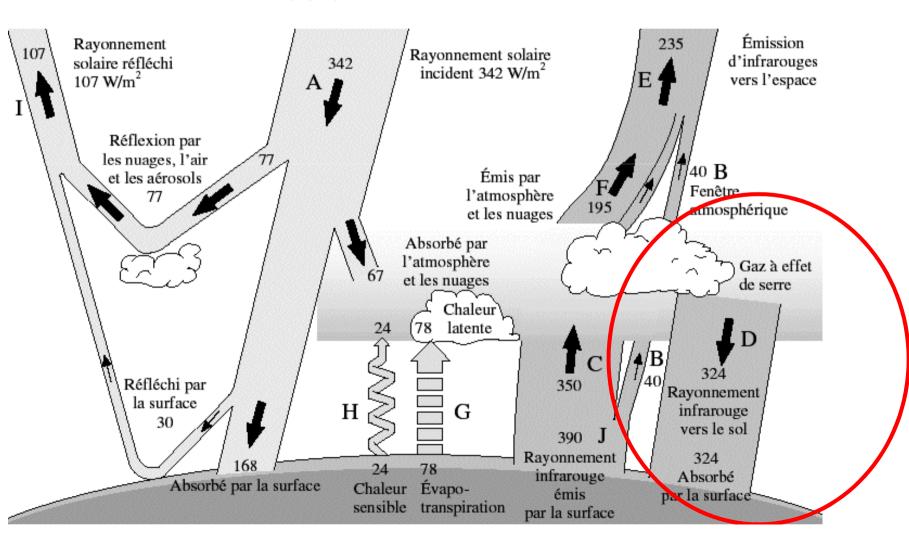
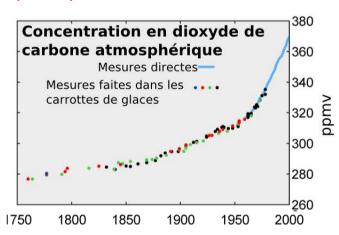

(b) Résultats de l'ACV

Figure 2.19 – Comparaison environnementale des procédés d'usinage et de fabrication additive [Serres2011]

6. Effet de serre

http://www.manicore.com/documentation/serre/physique.html

6.Pouvoir de rechauffement globalité


Définition de Pouvoir de réchauffement global (ou GWP Global Warming Potential en anglais) :

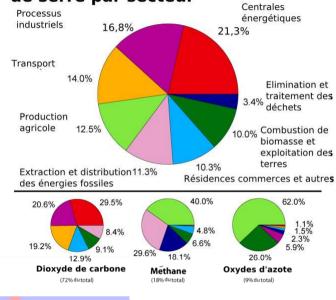
La contribution à l'effet de serre de chaque gaz se mesure grâce au pouvoir de réchauffement global (PRG) : c'est le forçage radiatif (c'est à dire la puissance radiative que le gaz à effet de serre renvoie vers le sol), cumulé sur une durée de de référence (par ex. 100 ans, GWP100). Cette valeur se mesure relativement au CO2.

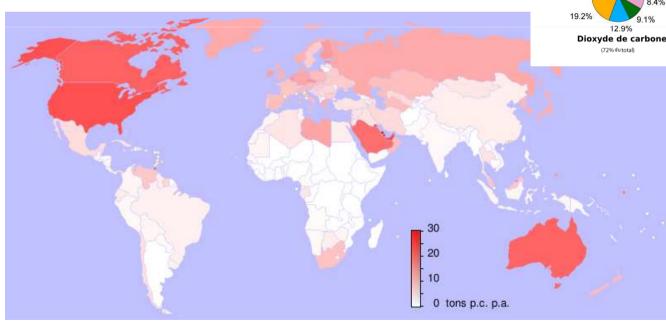
Si on émet 1 kg de méthane dans l'atmosphère, on produira le même effet, sur 100 ans, que si on avait émis 23 kg de dioxyde de carbone (CO2)

Pour l'équivalent carbone, on part du fait qu'un kg de CO₂ contient 0,2727 kg de carbone. L'émission d'un kg de CO₂ vaut donc 0,2727 kg d'équivalent carbone.

Pour les autres gaz, l'équivalent carbone vaut : équivalent carbone = PRG x 0,2727

6.Principaux GES


Durée de séjour des principaux gaz à effet de serre 11


gaz à effet de serre	formule	durée de séjour (ans)	PRG à 100 ans
vapeur d'eau	H ₂ O	< 1	8
dioxyde de carbone	CO ₂	15 ²⁶ - 200	1
méthane	CH4	4	23
protoxyde d'azote	N ₂ O	120	310
dichlorodifluorométhane (CFC-12)	CCl ₂ F ₂	130	6 200 - 7 100
chlorodifluorométhane (HCFC-22)	CHCIF ₂	12	1 300 - 1 400
tétrafluorométhane ¹⁶	CF4	50 000	6 500
hexafluorure de soufre	SF ₆	3 200	22 800 ²⁷

Emissions de CO2

Emissions annuelles de gaz à effet de serre par secteur

Tonnes de CO2 par hab et par an

Exemples de contenu CO2

Contenus CO₂ des combustibles courants (gCO_{2eq}/kWh Pouvoir calorifique inférieur)

· · · · · · · · · · · · · · · · · · ·						
Combustibles 🗵	Émissions directes 🖂	Émissions ACV 🖼				
Charbon	342	384				
Fioul lourd	281	320				
Fioul domestique / Gazole	270	300				
Essence (ARS, SP95, SP98)	264	309				
GPL	230	274				
Gaz naturel	205	234				
Bois-énergie	~0	13				

En analyse de cycle de vie, les valeurs dépendent des chaînes d'approvisionnement locale, elles sont donc fortement dépendantes des pays où les valeurs sont calculées, sans parler des périmètres d'analyse qui peuvent être différents.

Quelques exemples de contenus CO₂ du kWh produit par filière(gCO_{2eq}/kWh)

Le contenu CO₂ du kWh produit par filière est défini comme les émissions de <u>CO₂ par kWh d'électricité</u> <u>produit en sortie d'une filière de production</u> (centrale charbon, tranche nucléaire, éolienne...).

Filières 🗹	Émissions directes + ACV d'après EDF ¹⁰ ☑	Émissions directes + ACV d'après un rapport ⊡ de l'université de Stanford ₪
Nucléaire	5	9 à 70
Charbon 600 MW	962	
Charbon 250 MW	1036	
Fioul	998	
Hydraulique retenue	5	17 à 22
Photovoltaïque	97	19 à 59
Éoliennes	3	2,8 à 7,4
Géothermie		15,1 à 55

Energie primaire, énergie finale

Énergie primaire

L'énergie primaire est l'énergie disponible dans l'environnement et directement exploitable sans transformation. Étant donné les pertes d'énergie à chaque étape de transformation, stockage et transport, la quantité d'énergie primaire est toujours supérieure à l'énergie finale disponible.

Les sources d'énergie primaire sont multiples :

- •le pétrole brut ;
- •le gaz naturel;
- •les combustibles solides (charbon, biomasse);
- •le rayonnement solaire;
- •l'énergie hydraulique ;
- •l'énergie géothermique ;
- •l'énergie tirée des combustibles nucléaires.

Il s'agit donc essentiellement d'énergie thermique et d'énergie mécanique.

Ainsi, l'énergie mécanique produite par un moulin à vent est une énergie primaire. En revanche, si cette énergie mécanique est convertie en électricité, comme c'est le cas avec les aérogénérateurs, l'énergie électrique produite est considérée comme une énergie secondaire.

[source: http://www.futura-sciences.com/]

Energie

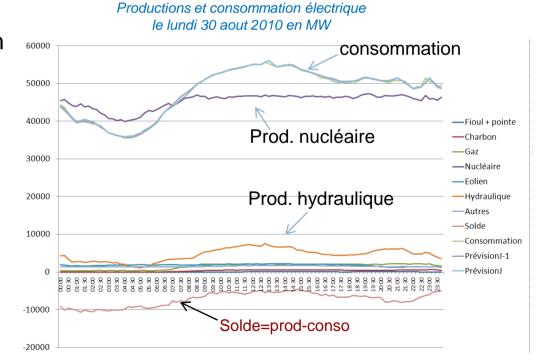
finale

primaire

Pertes de ransformation

Pertes de

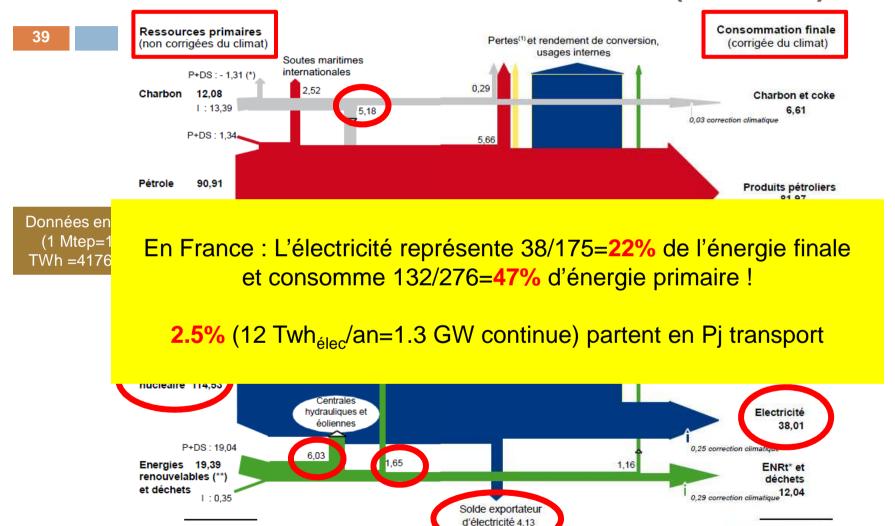
Coût énergétique global (ou global energy requirement, GER) est l'énergie primaire nécessaire pour produire X kWh finale


Mix énergétique

Le **mix énergétique**, ou bouquet énergétique, est la proportion des différentes sources dans la production d'énergie.

Ce mix dépend donc du mode de conversion et des technologies. Il est donc en toute rigueur fonction du temps.

Pour simplifier, par pays, on définit un mix énergétique moyen (par an)



http://www.rte-france.com

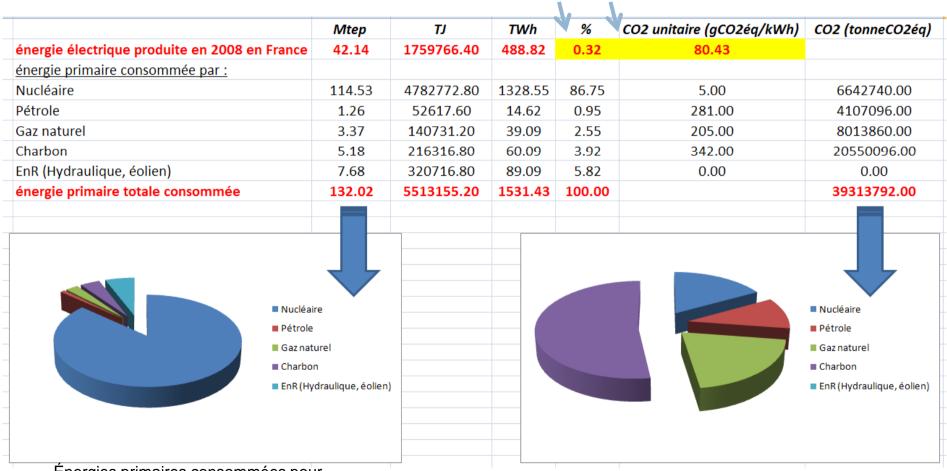
Production en France (2008)

www.statistiquesd.déceevmeblroep 2p0e09m e Cnhtiffdreusr calébsl ede.g lo'éunevr.gfire

Total: 276,60 Mtep

P : production nationale d'énergie primaire DS : déstockage

I : solde importateur


(°) : contribution positive aux stocks

(**): y compris hydraulique, éolien et photovoltaïque ENRt : énergies renouvelables thermiques (bois, déchets de bois, solaire thermique, biogarburants,...) et pompes à chaleur

Total: 175,25 Mtep

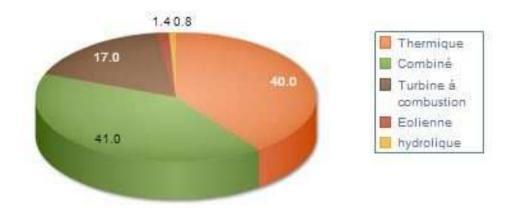
Mix et rendement de conversion

Pour produire 1 kWh_{elec} en France, il faut 3.1 kWh (13 MJ) primaire et cela produit 80 qCO2

Énergies primaires consommées pour produire de l'électricité (France, 2008)

Emission de CO2 par sources (France, 2008)

CVS BRETAGNE


Cas du Maghreb

41

La production d'électricité en Algérie en 2012 s'est élevée à 54,1 TWh, soit exactement 10% de la production française. Les centrales à gaz produisent l'essentiel de l'électricité du pays et la production d'électricité est ouverte à la concurrence.

En 2012, le Maroc a produit 26,496 TWh d'électricité pour une consommation de 31,056 TWH. Le pays est donc fortement dépendant de son voisin algérien pour l'importation (18,1% de la consommation). Les sources de production sont ainsi réparties (source : rapport annuel 2012 de l'ONEE):

En 2012, la **production d'électricité tunisienne** s'est élevée à **16.833 TWh**, dont 13.680 TWh produits par la STEG. Ci-dessous le mix énergétique de la STEG en % du total:

Exemples numériques (1/3)

42

Exemple 1 : voiture essence

(hybride	Dring	$104 \mathrm{d}$	CO	/km)
HIVDHae	PHUS	104 8	2 ししっ	/KIII)

					voiture électrique		
données	valeurs	grandeurs	90 km/h (V=25m/s)	130 km/h (V=36.1m/s)	90 km/h (V=25m/s)	130 km/h (V=36.1m/s)
reau (air) (kg/m3)	1.28	Fr=0.5*reau*S*Cx.V^2 (N)	360	750.6	idem	idem	
Cx (-)	0.3	Putile=Fr.V (kW)	9.0	18.8	idem	idem	
S (m ²)	3	temps=d/V (h)	1.1	0.8	idem	idem	
rend (-)	0.2	Wutile=Putile.temps (kWh)	10.0	14.4	idem	idem	
							attention, il y a le rend moteur
rend_elec (-)	0.8	Wprimaire=Wutile/rend (kWh)	50.0	72.2	39.1	56.4	élec+rend des centrales (0.32)
d (km)	100	litre=primaire/PCI (litres)	4.0	5.8	-	-	
PCI (kWh/kg)	12.4	pertes en chaleur=Wutile(1-rend)/rend (en kWh)	40.0	57.7	2.5	3.6	
CO2éq (gCO2éq/kWh)	264	pertes en litres=pertes/PCI (en litres)	3.2	4.7	-	-	
							à la recharge (mix France :
coût/litre (€/litre)	1.2	emissionCO2=CO2éq*Wprimaire (kg CO2)	13.2	19.1	3.1	4.5	80.4gCO2/kWh)
		emissionCO2/km=emissionCO2/d (gCO2/km)	132.0	190.5	31.4	45.3	
		coût=cout/litre*litres (€)	4.8	7.0	1.1	1.6	

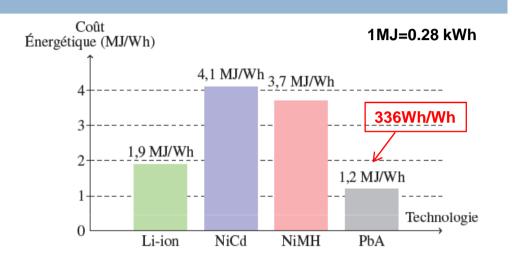
Energie primaire pour 100 km (kWh)

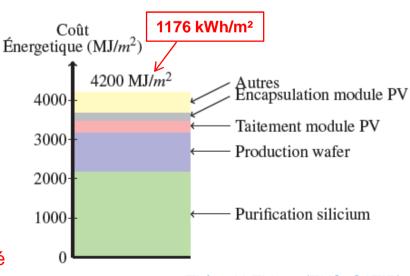
Emission (gCO2/km)

Coût financier pour 100 km (€)

Exemples numériques (3/3)

43


Exemple 3: batterie Li-Ion



Exemple 4 : Panneau photovoltaïque

1 m² produit 130 Wc électrique à 1176 kWh/m², cela donne GER=1176/130 = 9 kWh/Wc (temps de retour sur investissement énergétique 9000 h calculé pour la pleine puissance)

Thèse Y. Thiaux (ENS, SATIE)

La méthode d'éco-conception (éco-optimisation)

Préambule :

Il existent 3 niveaux (du moins intrusif au plus intrusif) :

- éco-qualification : ACV d'un système définit
- éco-optimisation : dimensionnement d'un système selon des critères ACV
- éco-conception : conception et dimensionnement d'un système selon des critères ACV en y intégrant les paramètres liés à sa fabrication (process de réalisation/fabrication, montage,...) et de déconstruction.

Cas du génie électrique

Service utile rejets Matière première (cuivre, Fabrication matériau ferromagnétique, Réparation et aluminium, ... Études classiques reutilisation Composants Extraction Traitement Assemblage élémentaires Utilisation du produit (phase habituellement optimisée) Chutes Autres Coût énergétique Coût énergétique Pertes de fonctionnement Fin de vie Objectif d'optimisation Minerai Déchets Déconstruction Recyclage ultimes Somme des coûts énergétiques élementaires Coût énergétique Coût énergétique

Les principaux coûts considérés sont : GER, GWP et matières premières

Energie sur cycle de vie (Eacv)

- 1 Energie (non utile) consommée lors de la phase de fonctionnement : E_{fct}
- 2 Energie des autres phases du cycle de vie : E_{mat}

$$E_{acv} = \int_{utilisation} \underbrace{P_{J} + P_{f} dt}_{P_{J} + P_{f} dt} + \sum_{\substack{p \\ m}} M_{m} E_{p,m}^{m}$$

Energie primaire de la matière

première au produit final, kWh/kg

Eléments	Coût	
Acier	6,3	
Cuivre	8,7	
Aluminium	31	
Aluminium recyclé	6,1	

 E_{acv} E_{fct} E_{mat} 0 Durée d'usage

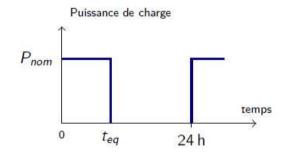
PRG (GWP) (éq. CO2)

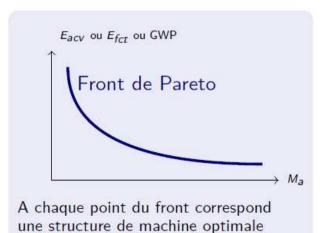
Potentiel de réchauffement climatique (kg eq. CO₂)

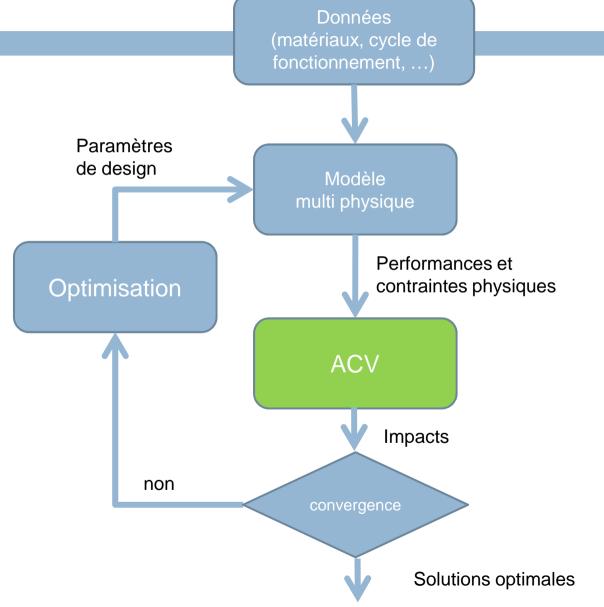
$$GWP_{acv} = \underbrace{GWP_{prod}}_{utilisation} \underbrace{\underbrace{(P_J + P_f)}_{P_{fct}} dt} + \underbrace{\sum_{p}_{m} M_m GWP_{p,m}^m}_{GWP_{mat}}$$

GWP_{prod} | 1kWh BT, mix énergétique :

français: 0,1 kg éq. CO₂ européen: 0,6 kg éq. CO₂


GWP_{mat} 1kg de matière, kg éq. CO₂: cuivre : 2,0


acier: 1.5


aluminium: 8.0

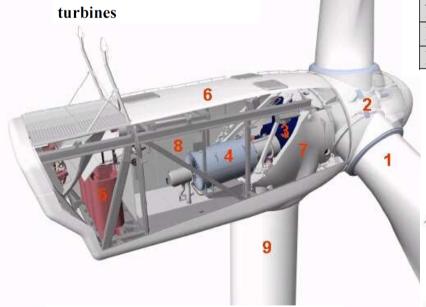
Démarche

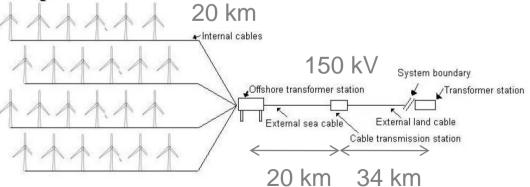
Profil de charge journalier, répété sur une durée d'usage donnée (15 ans)

Etude de cas

6 cas d'étude :

- Eolienne offshore
- Transformateur monophasé
- Moteur domotique
- -Transformateur de traction
- Moteur Asynchrone standard à cage
- Système PV autonome


Le cas 1 est issu d'une étude ACV de la société VESTAS Les cas 2 et 3 sont issus de la thèse de Vinent DFEBUSCHERE (SATIE, 2009). Le cas 4 est issu des travaux de thèse Ramzi BEN AYED (L2EP Lille, 2012) Le cas 5 est issu des travaux de thèse de Walid GHANMI (LS2E Béthune, 2012) Le cas 6 est issu de la thèse Yaël THIAUX (SATIE, 2010)


Cas 1: éolienne offshore

Life cycle assessment of offshore and onshore sited wind power plants based on

Vestas V90-3.0 MW

	Offshore turbine	Onshore turbine	
	80m hub height on	105m hub height on	
	monopile foundation	concrete foundation	
Tower	156 tons	235 tons	
Nacelle	68 tons	68 tons	
Rotor	40 tons	40 tons	
Foundation	203 tons	1,200 tons	

www.vestas.com

Bilan

Offshore V90-3MW:

énergie primaire consommée : 8 10⁶ kWh_{PCI}/turbine

énergie produite : 14.2 10⁶ kWh_{elec}/an/turbine

Ratio: 0.028 kWh_{PCI}/kWh_{elec} produit (sur 20 ans)

Onshore V90-3MW:

énergie primaire consommée : 4.3 10⁶ kWh_{PCI}/turbine

énergie produite : 7.9 10⁶ kWh_{elec}/an/turbine

Ratio: 0.027 kWh_{PCI}/kWh_{elec} produit (sur 20 ans)

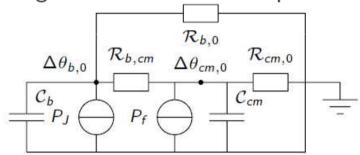
Retour sur investissement énergétique :

Offshore V90-3MW: 0.57 ans (soit 6.8 mois)
Onshore V90-3MW: 0.55 ans (soit 6.6 mois)

Cas 2: transformateur

Cf. Thèse V. Debusschère (satie)

Vue de dessus


N₁: Nombre de spires primaires

Puissance apparente: 200 VA

Contrainte thermique

$$\Delta \theta_{b,0} \leq \Delta \theta_{max}$$

Régime transitoire thermique

Contrainte d'induction

$$B = \frac{\sqrt{2}U_1}{N_1 S_n \omega_s} \le B_{max}$$

Données

Cf. Thèse V. Debusschère (satie)

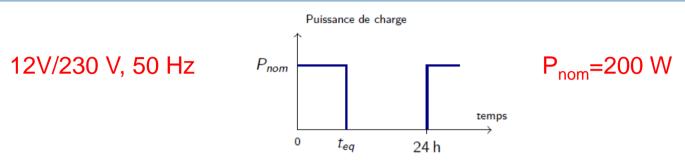
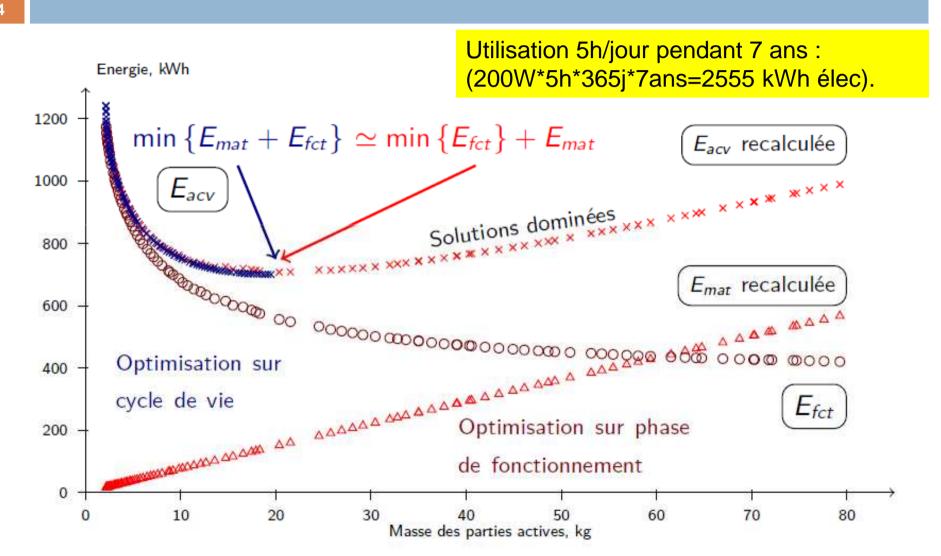


Table 3.1 – Coûts énergétiques massiques primaires utilisés dans les optimisations [BP0].

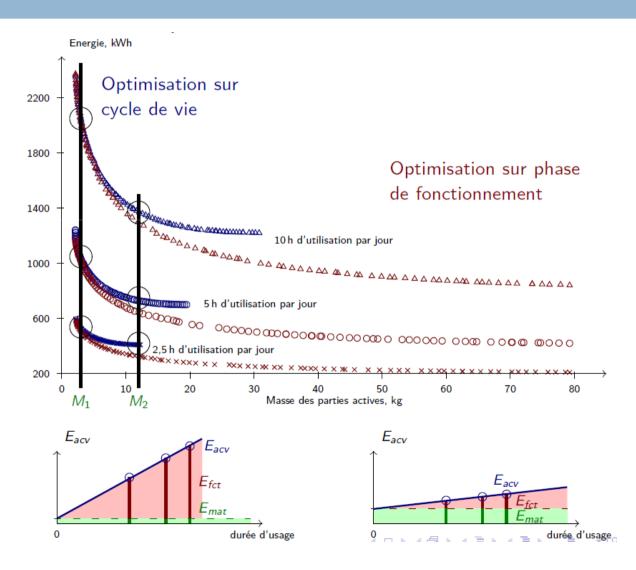
Phase du cycle de vie	Energie primaire, kWh
Extraction et production de cuivre courant (1 kg)	8,7
Extraction et production d'acier courant (1 kg)	6,3
Extraction et production d'aluminium mix européen (1 kg)	31,4
Transport en Camion >32 t sur 1000 km (1 kg)	0,6
Mix énergétique français basse tension (1 kWh électrique)	3,6
Mix énergétique européen basse tension (1 kWh électrique)	3,1


 ${\bf Table} \ {\bf 3.3} - \textit{Valeur des contraintes d'optimisation du transformateur}.$

Contraintes	Valeur
Température maximale du bobinage	130 °C
Niveau d'induction maximale dans le circuit magnétique du transformateur	$1,\!5\mathrm{T}$

C/S BRETAGNE

Resultats

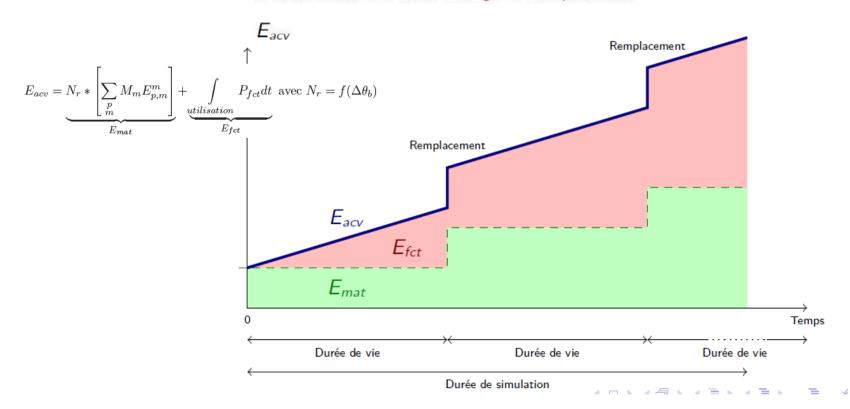

Cf. Thèse V. Debusschère (satie)

Influence du temps cycle Cf. Thèse V. Debusschère (satie)

Vieillessement

Cf. Thèse V. Debusschère (satie)

loi de Monsinger :


$$\tau_i = \tau_{ref}.2^{\frac{\theta_{ref} - \theta_i}{6}}$$

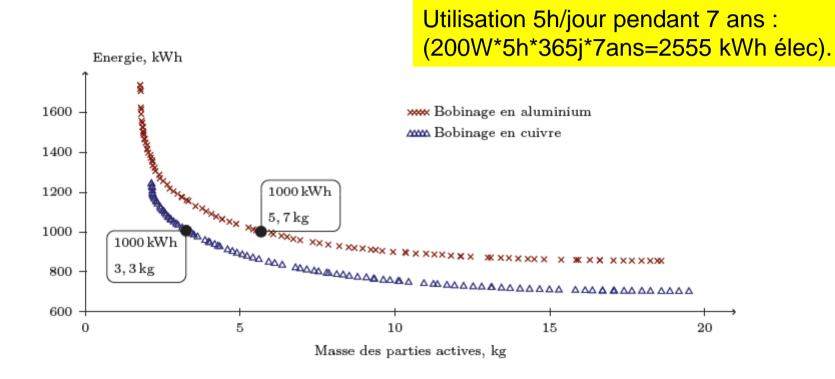
 $au_i = au_{ref}.2^{rac{ heta_{ref}- heta_i}{6}}$ pour un isolant de classe B, $heta_{ref}$ = 130°C et au_{ref} = 20 000 h

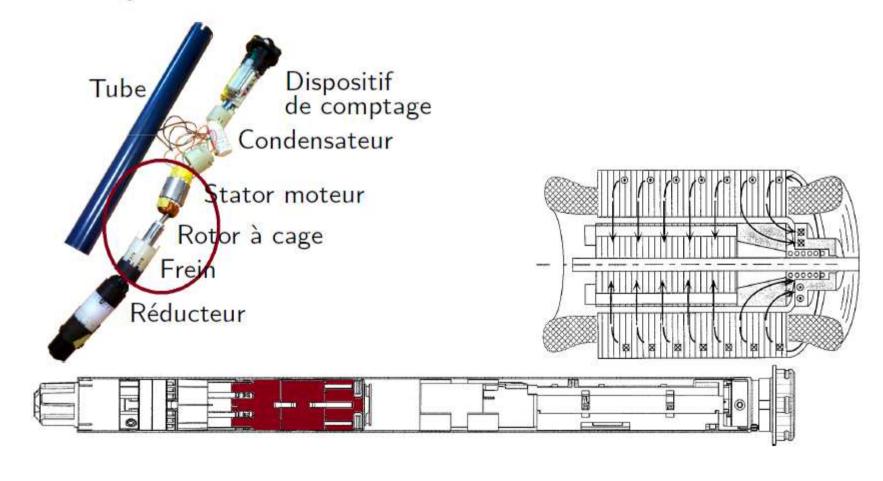
Pour $\theta_b < \theta_{ref}$, durée de vie de τ_{ref}

Si τ_{ref} supérieure à la durée d'usage \Rightarrow Pas de remplacement

• Pour $\theta_b > \theta_{ref}$, durée de vie divisée par deux pour chaque élévation de 6 °C Si τ_i inférieure à la durée d'usage \Rightarrow Remplacement

Sensibilité à certaines données de la connée de la certaines données de la certaine de la certai

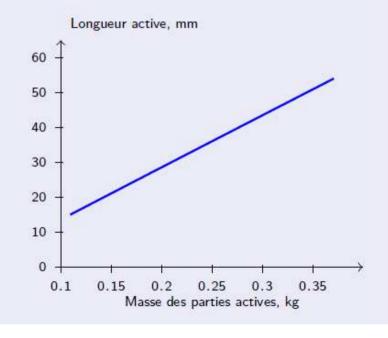



Figure 3.18 — Sensibilité des résultats d'optimisation au matériau de bobinage et exemple de structures à énergie globale sur cycle de vie identique. Optimisation lancée sur 2000 générations de 100 individus. Puissance de charge de 200 W, utilisation du transformateur en régime thermique permanent 5 h par jour pendant sept ans.

Cas 3: moteur domotique

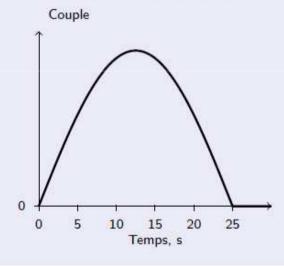
. Thèse V. Debusschère (satie)

Description du moteur



Cahier des Charges

Cf. Thèse V. Debusschère (satie)


Paramétrage

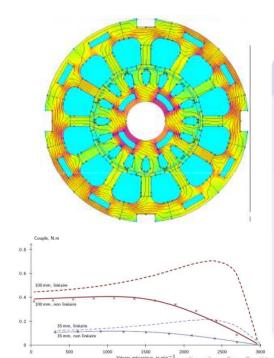
- Longueur active
- Nombre de spires par phase
- ⇒ Optimisation par calcul systématique

Cycles de fonctionnement

Montée-descente d'un rideau 50 secondes ⇒ Utilisations brèves

Régime thermique transitoire

Modélisation adiabatique

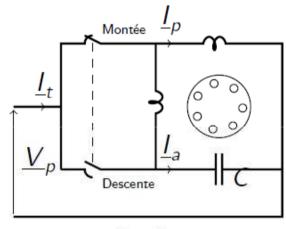

$$\Delta\theta_{b,0} = \int \frac{P_{Js}}{C_b} dt$$

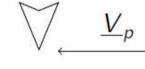
C/S BRETAGNE

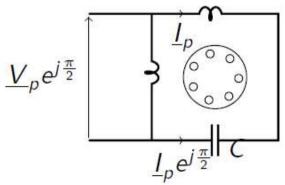
Modélisation

Cf. Thèse V. Debusschère (satie)

60

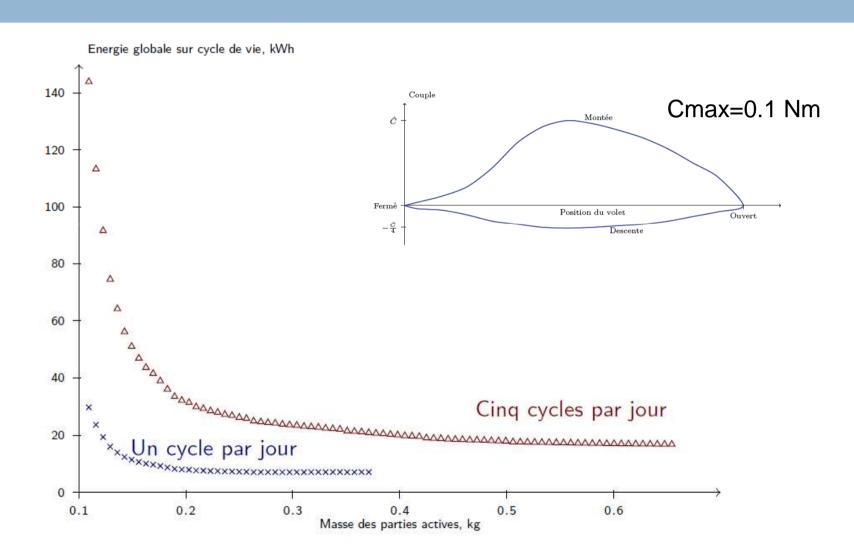

Calculs EF 2D


- Calculs à configuration mécanique donnée
- Calcul des pertes magnétiques
- Passage alimentation en courant – alimentation en tension


Hypothèses de modélisation

- Courants sinusoïdaux
- Courants équilibrés

Simplification du schéma d'alimentation



Resultats (1/2)

Cf. Thèse V. Debusschère (satie)

Rendement sur cycle de vie Cf. Thèse V. Debusschère (satie)

Rendement en fonctionnement

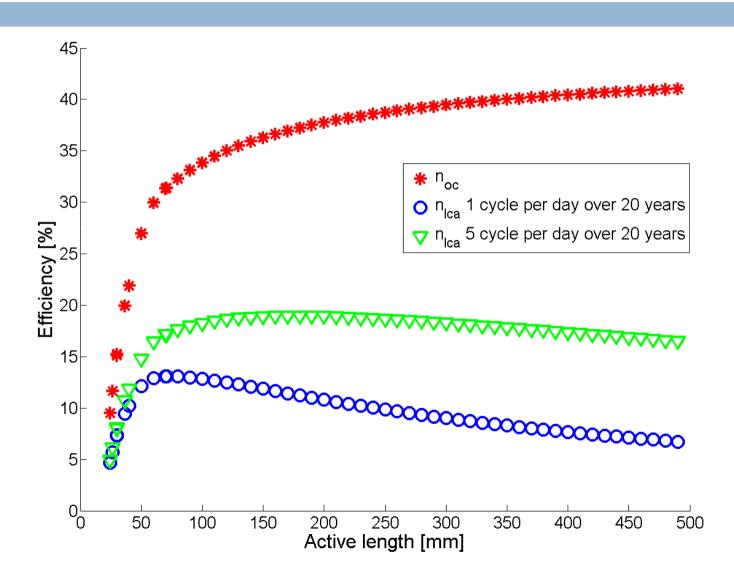
Rendement sur cycle de vie

$$\eta_f = \frac{\int\limits_{fct}^{fct} P_u dt}{\int\limits_{fct}^{fct} P_u dt + \int\limits_{fct}^{fct} P_{fct} dt}$$

$$\eta_f = \frac{\int\limits_{fct}^{} P_u dt}{\int\limits_{fct}^{} P_u dt + \int\limits_{fct}^{} P_{fct} dt} \qquad \eta_{cv} = \frac{\int\limits_{cycle}^{} P_u dt}{\int\limits_{cycle}^{} (P_u + P_{fct}) dt + E_{mat}}$$

Rendement plus approprié à la conception sur cycle de vie

Rendement sur cycle de vie


$$\eta_{cv}
ightarrow \eta_f$$
 quand $E_{mat} \ll \int\limits_{fct} P_{fct} dt$
 $\eta_{cv}
ightarrow 0$ quand $E_{mat} \gg \int\limits_{fct} (P_u + P_{fct}) dt$

Existence d'un maximum pour le rendement sur cycle de vie en fonction de la masse

Resultats (2/2)

Cf. Thèse V. Debusschère (satie)

Cas 4: Traction ferroviaire

Ramzi Ben Ayed

DOCTORAT DELIVRE PAR L'ECOLE CENTRALE DE LILLE

Titre de la thèse

Eco-conception d'une chaine de traction ferroviaire

De la caténaire au rail Soutenue le 25 juin 2012 devant le jury d'examen Caténaire Étage de conversion mécanique Étage de conversion électrique Les blocs électriques Moteur de traction Réducteur OND Rail Transformateur Le bogie Onduleur moteur Énergie auxiliaire αβχδ

Figure I.6: Description sommaire d'une chaîne de traction ferroviaire [CONV-08]

64

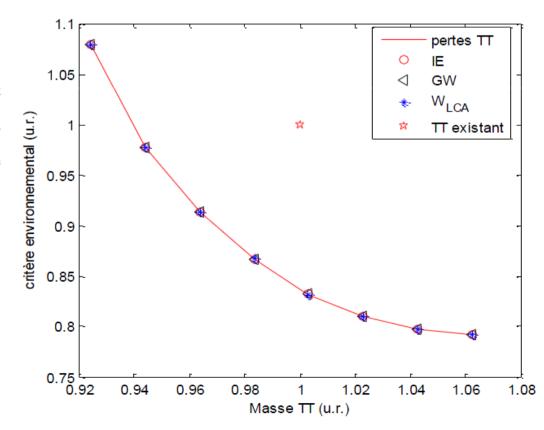
Traction ferroviaire

Ramzi Ben Ayed DOCTORAT DELIVRE PAR L'ECOLE CENTRALE DE LILLE

Titre de la thèse :

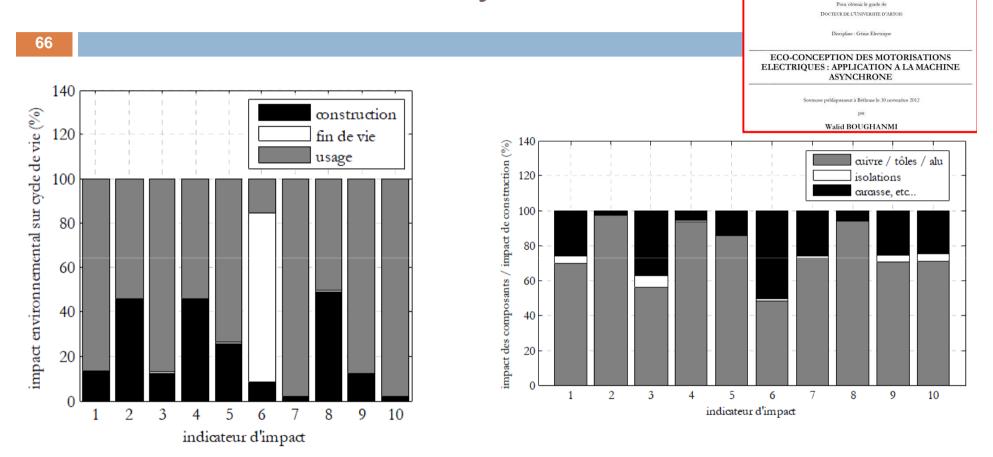
Eco-conception d'une chaine de traction ferroviaire

Soutenue le 25 juin 2012 devant le jury d'examen


Exemple du Transformateur de traction

W_{LCA} : énergie primaire consommée sur cycle de vie

GW: Global warming, regroupant les impacts de 48 des gaz à effet de serre


EI : Impact environnemental agrégé calculé en agrégeant 12 indices d'impact selon la méthode Impact 2002+

Pertes TT : les pertes de fonctionnement lors de la phase d'utilisation du transformateur

Cas 5 Machine Asynchrone

Impacts MAS sur CV

Impacts MAS sur la phase de construction

MAS classique fonctionnement S1, 8h/j pendant 10 ans

'1-R.nat', '2-Acid.', '3-Algues', '4-C.ozone', '5-Toxi.', '6-Poll.eau', '7-Poll.sol', '8-Oxyd.', '9-CO2', '10-Energie'

Impact du procédé d'émaillage

6

Stators bobinés avec du fil thermocollé polymérisé par

UV(a), avec du fil thermocollé classique(b) avec du fil imprégné classique (c)

Pour obtenit le grade de
DOCTEUR DE L'UNIVERSITE D'ARTOIS
Discipline : Génie Electrique

ECO-CONCEPTION DES MOTORISATIONS
ELECTRIQUES : APPLICATION A LA MACHINE
ASYNCHRONE

Soutenne publiquement à Béthune le 30 novembre 2012
par

Walid BOUGHANMI

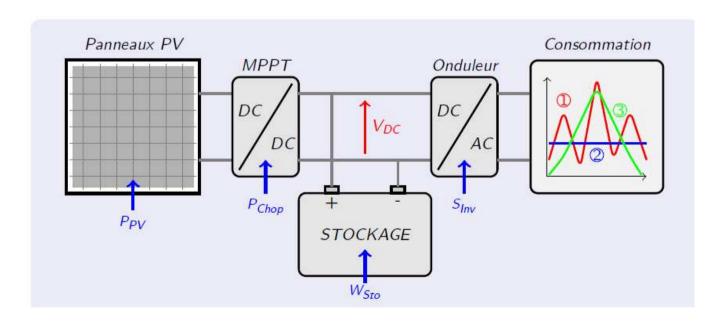
Energie (10)
80
Acid. (2)
Algues (3)
Oxyd. (8)
Poll.sol (7)
Toxi. (5)

---- émail thermo-adhérent

- émail classique

R.nat. (1)

impacts

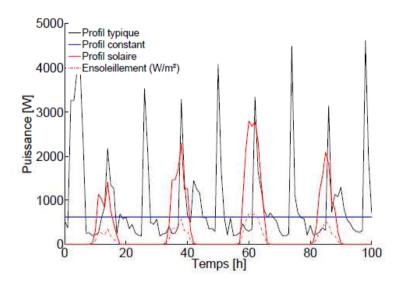


Cas 6 : système autonome PV

Cf. Thèse Y. Thiaux (satie)

→ Contexte

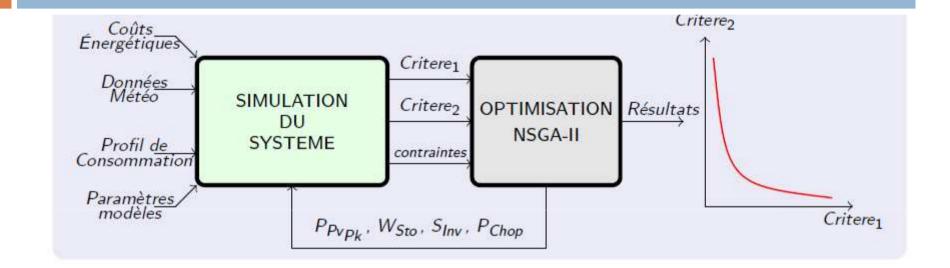
- Système photovoltaïque autonome (habitat : ~ qques kW)
- Système de stockage Plomb-Acide VRLA
- Seule la puissance active est considérée
- Profil de consommation déterministe (non dynamique)
- But : Quantifier l'impact du profil de consommation sur le dimensionnement du système photovoltaïque

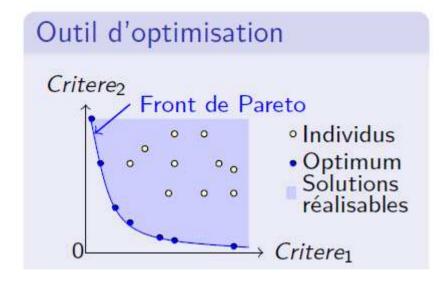


Modèle de consommation

Cf. Thèse Y. Thiaux (satie)

ightarrow Profils de consommation envisagés

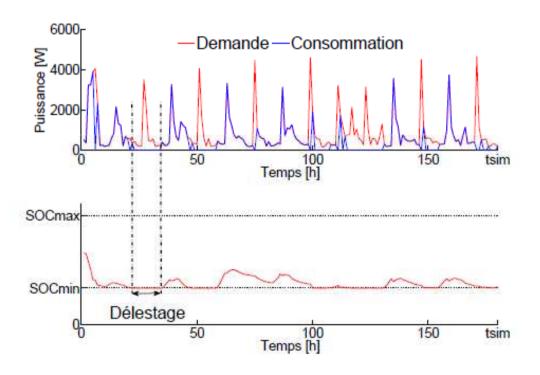

- Profil "typique"
 - Consommation électrique spécifique foyer 4 personnes
 - Mesures in-situ [ENERTECH]
 - $\bar{W}_{load} = 15$ kWh, $\hat{P}_{load} = 4,75$ kW
- 2 Profil "constant" : P_{load} = 624 W
- O Profil "solaire": consommation proportionnelle à l'ensoleillement


$$\implies$$
 \forall profil, $\int_0^{t_{sim}} = 164$ MWh sur 30 ans

Approche d'optimisation

Cf. Thèse Y. Thiaux (satie)

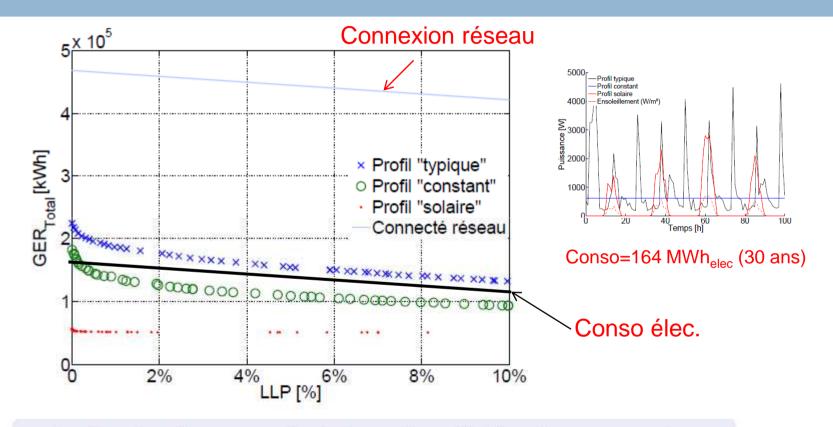
Critères d'optimisation


- → Critère de coût à minimiser
- → Critère de service à maximiser
- → critères par essence contradictoires...

Critère de service

Cf. Thèse Y. Thiaux (satie)

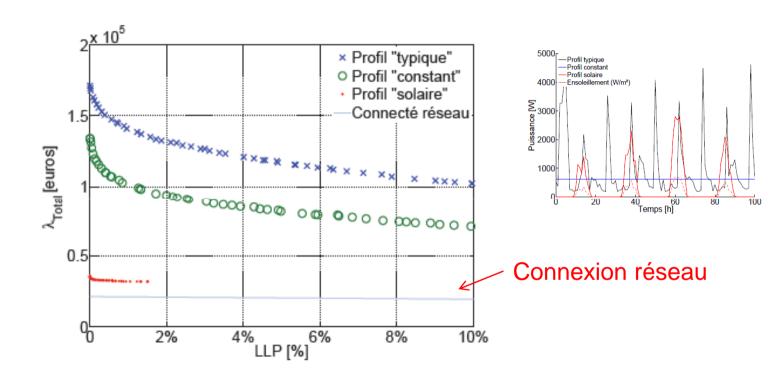
• LLP: "Loss of Load Probability"



$$\rightarrow LLP = \frac{\sum_{0}^{t_{sim}}(P_{demand}(t) - P_{load}(t)).\Delta t}{\sum_{0}^{t_{sim}}P_{load}(t).\Delta t}, \text{ critère à minimiser}$$

Résultats (1/2)

Cf. Thèse Y. Thiaux (satie)



- ightarrow A même énergie consommée, la forme du profil influe fortement sur le dimensionnement du système PV
- $ightarrow \forall$ le profil de consommation, l'électrification photovolta \ddot{i} que off-grid est énergétiquement préférable sur cycle de vie

Résultats (2/2)

Cf. Thèse Y. Thiaux (satie)

- ightarrow Minimisation importante du coût économique lorsque l'on se rapproche du profil "solaire"
- ightarrow orall le profil, mode connecté réseau économiquement préférable aux systèmes photovolta \ddot{a} ques autonomes

Bibliographie (1/3)

Rapports

- C. BATAILLE, R. GALLEY « L'aval du cycle nucléaire ». Tome 1 : Etude générale, Juin 1998, Tome 2 : Les coûts de production de l'électricité, février 1999,
- ■rapports de l'Office Parlementaire.
- ■C. BIRRAUT, J.Y. LE DÉAULT, « rapport sur l'état actuel et les perspectives techniques des énergies renouvelables », Office parlementaire d'évaluation des choix scientifiques et technologiques, novembre 2001.
- ■Commission Européenne « Énergie pour l'avenir : les sources d'énergie renouvelables. Livre blanc établissant une stratégie et un plan d'action communautaires », 1998.
- Proposition de directive du parlement européen et du conseil « relative à la promotion de l'électricité produite à partir de sources d'énergie renouvelables sur le marché intérieur de l'électricité », 2000.
- ■Annual Energy Review, rapport de la CEE 1999.
- ■J.M. CHARPIN, « Programmation pluriannuelle des investissements de production électrique », Rapport au parlement, 29 janvier 2002.
- ■Y. COCHET, « Stratégie et moyens de développement de l'efficacité énergétique et des sources d'énergie renouvelables en France », rapport au 1er ministre, septembre 2000.
- ■M. DENEUX, « Rapport sur l'évaluation de l'ampleur des changements climatiques, de leurs causes et de leur impact prévisible sur la géographie de la France à l'horizon 2025, 2050 et 2100 », Office Parlementaire d'évaluation des choix scientifiques et technologique, 13 février 2002.
- ■FRAMATOME, "Arguments sur le nucléaire et autres sources d'énergie électrique », Direction de la communication, décembre 1997.
- ■International Energy Agency, « World Energy Outlook 2002 ».
- ■J.M. CHARPIN, B. DESSUS, R. PELLAT, « Etude économique prospective de la filière électrique nucléaire », Rapport au premier Ministre de la République Française, juillet 2000.
- ■EurObserv'ER, Le baromètre d'hydroélectricité : 20% de la producton d'électricité mondiale, revue Systèmes Solaires n°140, Dec. 2000.
- ■EurObserv'ER, Le baromètre photovoltaïque : 44% de croissance en 2000 » revue Systèmes Solaires n°142, mars 2001.
- ■EurObserv'ER, Baromètre du solaire photovoltaïque : 39,2% de croissance en 2001 » revue Systèmes Solaires n°149, mai-juin 2002.
- ■Rapport du Ministère des Finances et de l'Industrie, « Programmation pluriannuelle des investissements de production électrique », président de la commission J.M. CHARPIN, 29 janvier 2002.
- ■H. REVOL, rapport d'information du Sénat n°305 (2002) sur le colloque « Le marché européen de l'énergie. Enjeux et conséquences de l'ouverture » tenu à Paris le 20 juin 2001.
- ■Réseau de Transport d'Electricité (RTE), « Energie électrique en France 2002 », brochure du Centre d'Information du Réseau Electrique Français.
- ■O. SIDLER, Commission des Communautés Européennes et ADEME, " Etude expérimentale des appareils électroménagers à haute efficacité énergétique placés en situation réelle " Rapport du projet " Ecodrôme ", janvier 98.
- ■Rapport danois « Bølgekraftforeningens Konceptkatalog » (revue des concepts de générateurs fonctionnant à partir de la houle), april 2001, www.waveenergy.dk.

Bibliographie (2/3)

75

Sites internet

- serveur internet de la société AWS (Archimed Wave System) http://www.waveswing.com/
- serveur internet du Commissariat à l'Energie Atomique, http://www.cea.fr.
- ■Site internet de la Direction de l'Energie et des Matières Premières, du Ministère de l'Industrie Français, http://www.industrie.gouv.fr/energie
- ■site internet de l'Energy Information Administration du DOE (Departement of Energy) du gouvernement US, http://www.eia.doe.gov/.
- ■Site internet d'informations très complètes sur la situation nucléaire française, www.francenuc.org
- ■site web sur la géothermie, http://www.crest.org/geothermal/index.html
- ■site internet de l'International Energy Agency, http://www.iea.org
- ■site internet de l'Institut Français du Pétrole, http://www.ifp.fr
- ■site web du Jamstec (énergie des vagues), http://www.jamstec.go.jp/jamstec/MTD/Whale/
- ■site internet du Los Alamos National Laboratory, USA, http://tritium.lanl.gov/energy_ressources.html.
- ■entreprise norvégienne de turbines (ou « éoliennes) sous-marines exploitant les courants marins, http://www.tidevannsenergi.com/
- ■site web danois sur l'énergie des vagues, http://www.waveenergy.dk/
- ■site internet du Conseil Mondial de l'Energie, http://www.worldenergy.org/

Organismes d'information sur les questions énergétiques et électriques

- ■Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME) : http://www.ademe.fr
- ■Agence Internationale de l'Energie (International Energy Agency) : http://www.iea.org
- ■Conseil Mondial de l'Energie (World Energy Council): http://www.worldenergy.org/wec-geis/
- ■Electricité de France (EDF) : http://www.edf.fr/
- ■Energy Information Administration (Département de l'Energie du gouvernement US) : http://www.eia.doe.gov/
- ■Réseau de Transport d'électricité (RTE) : http://www.rte-France.com
- ■Commissariat à l'Energie Atomique (CEA) : http://www.cea.fr/
- ■Comité de liaison Energies Renouvelables (CLER): http://www.cler.org
- ■Observateur des Energies Renouvelables (Observ'ER), revues Systèmes Solaires et Renewable Energy Journal : http://energies-renouvelables.org
- ■ENERGIE PLUS: http://www.energie-plus.com/
- ■MANICORE site de Jean-Marc JANCOVICI (consultant) : http://www.manicore.com/
- ■Institut Français du Pétrole (IFP) : http://www.ifp.fr
- ■Direction Générale de l'Énergie et des Matières Premières : http://www.industrie.gouv.fr
- ■Institut de l'Energie et de l'environnement de la Francophonie (IEPF) : http://www.iepf.org/
- ■CIELE: Centre d'Information sur l'Energie et l'Environement: http://www.ciele.org/.

Bibliographie (3/3)

76

Articles et ouvrages

- P. BASTARD, D. FARGUE, P. LAURIER, B. MATHIEU, M. NICOLAS, P. ROOS, « Electricité. Voyage au cœur du système », Eyrolles 2000.
- J. BERGOUNOUS, « Le secteur électrique : du monopole à la concurrence », Techniques de l'Ingénieur, D4007, novembre 2001.
- B. CHABOT, « Énergies renouvelables » Encyclopaedia Universalis 1997.
- P. CIAIS, J. JOUZEL, H. LE TREUT, « Le climat, variabilités et évolution future », petits déjeuner de presse CEA, 8 novembre 2000.
- « Les trois voies de l'énergie solaire». Clefs CEA n°44, hiver 2000/2001.
- B. MULTON, O. GERGAUD, H. BEN AHMED, X. ROBOAM, S. ASTIER, B. DAKYO, C. NIKITA, « Etat de l'art des aérogénérateurs », Ouvrage collectif
- « L'électronique de puissance vecteur d'optimisation pour les énergies renouvelables », Ed. NOVELECT ECRIN, mai 2002, pp.97-154.
- B. MULTON, « Production d'électricité par des sources renouvelables », Techniques de l'Ingénieur, Traités de Génie Electrique, D4005/6, mai 2003, 11p.
- B. MULTON, O. GERGAUD, G. ROBIN, H. BEN AHMED, « Ressources énergétiques et consommation humaine d'énergie », Techniques de l'Ingénieur, Traités de Génie Electrique, D3900, novembre 2003, 14p.

Cours téléchargeables

B. Multon « énergie et ressources », ENS Cachan, antenne de Bretagne : <u>www.bretagne.ens-cachan.fr</u> loliet xxxx

Normalisation:

ISO 114692000Plastiques - Identification générique et marquage des produits en matière plastique.

ISO 140211999Marquage et déclarations environnementaux - Autodéclarations environnementales (étiquetage de type II).

ISO/TR 140252000Marquage et déclarations environnementaux - Déclarations environnementales de type III.

Législations

Directive 2002/96/CE du Parlement européen et du Conseil du 27 janvier 2003, relative aux déchets d'équipements électriques et électroniques (DEEE) - Déclaration conjointe du Parlement européen, du Conseil et de la Commission relative à l'article 9.

Directive 2002/95/CE du Parlement européen et du Conseil du 27 janvier 2003, relative à la limitation de l'utilisation de certaines substances dangereuses dans les équipements électriques et électroniques.

Bibliographie

- Cours B. Multon (ENS Cachan, Ker Lann)
- Cours de Olivier Jolliet, EPFL
- Thèse V. Debusschere (SATIE)
- Thèse de Yael THIAUX (SATIE)
- Conf francophone sur l'éco-coneption en GE (Toulouse)

http://www.confrege.laplace.univ-tlse.fr